An Application of the Probabilistic Method to Sum-Free Sets Bharath Jaladi

Lecture Given at PACT 2017: July $25^{\text {th }}, 2017$ | Updated: November $12^{\text {th }}, 2017$
Inspired by and expanded upon a lecture given by Mark Braverman at PACT 2014

Definition A set S is said to be sum-free when, for any two elements $a, b \in S$ (not necessarily distinct), $a+b \notin S$.

Theorem (Erdös) Every nonempty set $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ of n non-zero integers contains a sum-free subset A such that $|A|>\frac{n}{3}$.

Proof.
Lemma 1 There exist infinitely many primes p of the form $p=3 j+2, j \in \mathbb{Z}^{+}$.
Proof. Assume for the sake of contradiction that there exist finitely many primes p of the form $p=3 j+2, j \in \mathbb{Z}^{+}$. In particular, note here that because $j>0$, any prime of this form must be greater than 2 and odd. Suppose there are h such primes, $p_{1}, p_{2}, \ldots, p_{h}$. Clearly, $p_{1} p_{2} \cdots p_{h}$ must be some odd positive integer, g. Consider $P=3 p_{1} p_{2} \cdots p_{h}+2$. Note that P is odd and an integer greater than 1 . Thus, it must be the case that P is composite, else there would be a contradiction, as it is of the form $3 g+2$. As such, P must be able to be expressed as the product of odd primes. It can be seen, however, that P is not divisible by 3 or any prime $p_{1}, p_{2}, \ldots, p_{h}$, as each is a divisor of $P-2$ and greater than 2 . Further, note that any number of the form $3 j+3$ for $j \in \mathbb{Z}^{+}$is divisible by 3 and thus not prime. As a result, P must be able to be expressed as the product of odd primes of the form $3 j+1$ for $j \in \mathbb{Z}^{+}$. Suppose the prime factorization of P consists of f such primes (not necessarily distinct), $p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \ldots, p_{f}^{\prime \prime}$. That is, P can be expressed as $\left(3 p_{1}^{\prime}+1\right)\left(3 p_{2}^{\prime}+1\right) \cdots\left(3 p_{f}^{\prime}+1\right)$. However, this product will be of the form $3 e+1$ for some $e \in \mathbb{Z}^{+}($that is, $P \equiv 1(\bmod 3))$, which is a contradiction, as P was defined to be $3 g+2($ that is, $P \equiv 2(\bmod 3))$.

Let $r=3 k+2$ be a prime such that $r>2 \max _{i} b_{i}$. Such a prime must exist by Lemma 1. Consider the set $C=\{k+1, k+2, \ldots, 2 k+1\}$. Note that the elements of C are a subset of the possible values of $a \bmod r$ for $a \in \mathbb{Z}$. Let c, d be arbitrary but particular elements of C (not necessarily distinct). It can be seen that $k+1 \leq c, d$, and as such, $(k+1)+(k+1)=2 k+2 \leq c+d$. As $2 k+2$ is greater than the largest element of $C, 2 k+1$, it is clear that C is a sum-free set.

Definition Denote a set S as sum-free with respect to mod c when, for any two elements $a, b \in S$ (not necessarily distinct), $a+b(\bmod c) \notin S$.
C was already shown to be sum-free. With an additional observation, it can be seen that C is sum-free with respect to $\bmod r$. Once again consider arbitrary but particular $c, d \in C$ (not necessarily distinct). Clearly, $2 k+1 \geq c, d$. Thus, $c+d \leq(2 k+1)+(2 k+1)=4 k+2 \equiv k$
$(\bmod r)$. As such, C can be denoted as sum-free with respect to $\bmod r$.
Lemma 2 For any integers x, y, z and $u \in \mathbb{R}$, if $u x \bmod w, u y \bmod w$, and $u z \bmod w$ are elements of a set D that is sum-free and sum-free with respect to $\bmod w$, then $x+y \neq z$.

Proof. Let $u x \bmod w=x^{\prime}, u y \bmod w=y^{\prime}$, and $u z \bmod w=z^{\prime}$. As D is sum-free, it is immediately seen that $x^{\prime}+y^{\prime} \neq z^{\prime} . u x, u y$, and $u z$ can be expressed $u x=r a+x^{\prime}, u y=r b+y^{\prime}$, and $u z=r c+z^{\prime}$ for some integers a, b, c. Assume for the sake of contradiction that $x+y=z$, that is, $\frac{r a+x^{\prime}}{u}+\frac{r b+y^{\prime}}{u}=\frac{r c+z^{\prime}}{u}$. Thus, we have the following.

$$
\begin{aligned}
\frac{r a+x^{\prime}}{u}+\frac{r b+y^{\prime}}{u} & =\frac{r c+z^{\prime}}{u} \\
r a+x^{\prime}+r b+y^{\prime} & =r c+z^{\prime} \\
a+\frac{x^{\prime}}{r}+b+\frac{y^{\prime}}{r} & =c+\frac{z^{\prime}}{r} \\
(a+b)+\frac{x^{\prime}+y^{\prime}}{r} & =c+\frac{z^{\prime}}{r}
\end{aligned}
$$

In the exact same manner as in the proof of Lemma 2, it can be seen that $0 \leq x^{\prime}, y^{\prime}, z^{\prime} \leq r-1$, thus, $0 \leq x^{\prime}+y^{\prime} \leq 2 r-2$. a, b, c are integers, thus, it must be the case that the fractional part of $\frac{\overline{x^{\prime}}+y^{\prime}}{r}$ must equal $\frac{z^{\prime}}{r}$. That is, $x^{\prime}+y^{\prime}(\bmod r)=z^{\prime}$, which is a contradiction.

Select a q uniformly at random from $[1 . . r-1]$ and consider the set $A=\left\{b_{i} \mid q b_{i}(\bmod r) \in\right.$ $C\}$. By Lemma 2, A is sum-free. Note that for all $i, q b_{i}$ is not divisible by r because $q, b_{i}<r$ and r is prime. Thus, there are $3 k+1$ possible values $q b_{i}(1,2, \ldots, 3 k+1)$ for all i. Note that for a particular b_{i}, as q ranges over $[1 . . r-1], q b_{i}(\bmod r)$ ranges over all elements of C. As a result, for each i

$$
\operatorname{Pr}\left[q b_{i} \in C\right]=\frac{|C|}{3 k+1}=\frac{k+1}{3 k+1}>\frac{1}{3} .
$$

Using this result, it can be seen that

$$
\mathbb{E}[|A|]=\sum_{i=1}^{n} \operatorname{Pr}\left[q b_{i} \in C\right]>\sum_{i=1}^{n} \frac{1}{3}>\frac{n}{3} .
$$

As $\mathbb{E}[|A|]>\frac{n}{3}$, there must exist some A such that $|A|>\frac{n}{3}$. Thus, there exists a sum-free subset A of B such that $|A|>\frac{n}{3}$.

