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Definition A set S is said to be sum-free when, for any two elements a, b ∈ S (not neces-
sarily distinct), a + b 6∈ S.

Theorem (Erdös) Every nonempty set B = {b1, b2, ..., bn} of n non-zero integers contains a
sum-free subset A such that |A| > n

3
.

Proof.

Lemma 1 There exist infinitely many primes p of the form p = 3j + 2, j ∈ Z+.

Proof. Assume for the sake of contradiction that there exist finitely many primes p of the
form p = 3j + 2, j ∈ Z+. In particular, note here that because j > 0, any prime of this form
must be greater than 2 and odd. Suppose there are h such primes, p1, p2, ..., ph. Clearly,
p1p2 · · · ph must be some odd positive integer, g. Consider P = 3p1p2 · · · ph + 2. Note that
P is odd and an integer greater than 1. Thus, it must be the case that P is composite, else
there would be a contradiction, as it is of the form 3g + 2. As such, P must be able to be
expressed as the product of odd primes. It can be seen, however, that P is not divisible by 3
or any prime p1, p2, ..., ph, as each is a divisor of P −2 and greater than 2. Further, note that
any number of the form 3j + 3 for j ∈ Z+ is divisible by 3 and thus not prime. As a result,
P must be able to be expressed as the product of odd primes of the form 3j + 1 for j ∈ Z+.
Suppose the prime factorization of P consists of f such primes (not necessarily distinct),
p
′′
1 , p

′′
2 , ..., p

′′

f . That is, P can be expressed as (3p
′
1 + 1)(3p

′
2 + 1) · · · (3p′

f + 1). However, this
product will be of the form 3e + 1 for some e ∈ Z+ (that is, P ≡ 1 (mod 3)), which is a
contradiction, as P was defined to be 3g + 2 (that is, P ≡ 2 (mod 3)).

Let r = 3k + 2 be a prime such that r > 2 maxi bi. Such a prime must exist by Lemma
1. Consider the set C = {k + 1, k + 2, ..., 2k + 1}. Note that the elements of C are a
subset of the possible values of a mod r for a ∈ Z. Let c, d be arbitrary but particular
elements of C (not necessarily distinct). It can be seen that k + 1 ≤ c, d, and as such,
(k+ 1) + (k+ 1) = 2k+ 2 ≤ c+d. As 2k+ 2 is greater than the largest element of C, 2k+ 1,
it is clear that C is a sum-free set.

Definition Denote a set S as sum-free with respect to mod c when, for any two elements
a, b ∈ S (not necessarily distinct), a + b (mod c) 6∈ S.

C was already shown to be sum-free. With an additional observation, it can be seen that C
is sum-free with respect to mod r. Once again consider arbitrary but particular c, d ∈ C (not
necessarily distinct). Clearly, 2k + 1 ≥ c, d. Thus, c + d ≤ (2k + 1) + (2k + 1) = 4k + 2 ≡ k
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(mod r). As such, C can be denoted as sum-free with respect to mod r.

Lemma 2 For any integers x, y, z and u ∈ R, if ux mod w, uy mod w, and uz mod w
are elements of a set D that is sum-free and sum-free with respect to mod w, then x+y 6= z.

Proof. Let ux mod w = x′, uy mod w = y′, and uz mod w = z′. As D is sum-free, it is
immediately seen that x′+y′ 6= z′. ux, uy, and uz can be expressed ux = ra+x′, uy = rb+y′,
and uz = rc+z′ for some integers a, b, c. Assume for the sake of contradiction that x+y = z,
that is, ra+x′

u
+ rb+y′

u
= rc+z′

u
. Thus, we have the following.

ra + x′

u
+

rb + y′

u
=

rc + z′

u

ra + x′ + rb + y′ = rc + z′

a +
x′

r
+ b +

y′

r
= c +

z′

r

(a + b) +
x′ + y′

r
= c +

z′

r

In the exact same manner as in the proof of Lemma 2, it can be seen that 0 ≤ x′, y′, z′ ≤ r−1,
thus, 0 ≤ x′ + y′ ≤ 2r − 2. a, b, c are integers, thus, it must be the case that the fractional
part of x′+y′

r
must equal z′

r
. That is, x′ + y′ (mod r) = z′, which is a contradiction.

Select a q uniformly at random from [1..r − 1] and consider the set A = {bi | qbi (mod r) ∈
C}. By Lemma 2, A is sum-free. Note that for all i, qbi is not divisible by r because q, bi < r
and r is prime. Thus, there are 3k+ 1 possible values qbi (1, 2, ..., 3k+ 1) for all i. Note that
for a particular bi, as q ranges over [1..r − 1], qbi (mod r) ranges over all elements of C. As
a result, for each i

Pr[qbi ∈ C] =
|C|

3k + 1
=

k + 1

3k + 1
>

1

3
.

Using this result, it can be seen that

E[|A|] =
n∑

i=1

Pr[qbi ∈ C] >
n∑

i=1

1

3
>

n

3
.

As E[|A|] > n
3
, there must exist some A such that |A| > n

3
. Thus, there exists a sum-free

subset A of B such that |A| > n
3
.
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